KaoGuTi的IT專家團隊利用他們的經驗和知識不斷的提升考試培訓材料的品質來滿足考生的需求,保證考生順利地通過第一次參加的Databricks Databricks-Generative-AI-Engineer-Associate認證考試。通過購買KaoGuTi的產品你總是能夠更快得到更新更準確的考試相關資訊。並且KaoGuTi的產品的覆蓋面很廣,可以為很多參加IT認證考試的考生提供方便,而且準確率100%。它能給你100%的信心,讓你安心的參加考試。
KaoGuTi是一个为考生们提供IT认证考试的考古題并能很好地帮助大家的网站。KaoGuTi通過活用前輩們的經驗將歷年的考試資料編輯起來,製作出了最好的Databricks-Generative-AI-Engineer-Associate考古題。考古題裏的資料包含了實際考試中的所有的問題,可以保證你一次就成功。
>> Databricks-Generative-AI-Engineer-Associate信息資訊 <<
KaoGuTi提供的培訓工具包含關於Databricks Databricks-Generative-AI-Engineer-Associate認證考試的學習資料及類比訓練題,更重要的是還會給出跟考試很接近的練習題和答案。選擇KaoGuTi可以保證你可以在短時間內學習及加強IT專業方面的知識,還可以以高分數通過Databricks Databricks-Generative-AI-Engineer-Associate的認證考試。
主題 | 簡介 |
---|---|
主題 1 |
|
主題 2 |
|
主題 3 |
|
主題 4 |
|
主題 5 |
|
問題 #51
A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author's web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user' s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.
Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)
答案:C,E
解題說明:
To optimize a chunking strategy for a Retrieval-Augmented Generation (RAG) application, the Generative AI Engineer needs a structured approach to evaluating the chunking strategy, ensuring that the chosen configuration retrieves the most relevant information and leads to accurate and coherent LLM responses.
Here's whyCandEare the correct strategies:
Strategy C: Evaluation Metrics (Recall, NDCG)
* Define an evaluation metric: Common evaluation metrics such as recall, precision, or NDCG (Normalized Discounted Cumulative Gain) measure how well the retrieved chunks match the user's query and the expected response.
* Recallmeasures the proportion of relevant information retrieved.
* NDCGis often used when you want to account for both the relevance of retrieved chunks and the ranking or order in which they are retrieved.
* Experiment with chunking strategies: Adjusting chunking strategies based on text structure (e.g., splitting by paragraph, chapter, or a fixed number of tokens) allows the engineer to experiment with various ways of slicing the text. Some chunks may better align with the user's query than others.
* Evaluate performance: By using recall or NDCG, the engineer can methodically test various chunking strategies to identify which one yields the highest performance. This ensures that the chunking method provides the most relevant information when embedding and retrieving data from the vector store.
Strategy E: LLM-as-a-Judge Metric
* Use the LLM as an evaluator: After retrieving chunks, the LLM can be used to evaluate the quality of answers based on the chunks provided. This could be framed as a "judge" function, where the LLM compares how well a given chunk answers previous user queries.
* Optimize based on the LLM's judgment: By having the LLM assess previous answers and rate their relevance and accuracy, the engineer can collect feedback on how well different chunking configurations perform in real-world scenarios.
* This metric could be a qualitative judgment on how closely the retrieved information matches the user's intent.
* Tune chunking parameters: Based on the LLM's judgment, the engineer can adjust the chunk size or structure to better align with the LLM's responses, optimizing retrieval for future queries.
By combining these two approaches, the engineer ensures that the chunking strategy is systematically evaluated using both quantitative (recall/NDCG) and qualitative (LLM judgment) methods. This balanced optimization process results in improved retrieval relevance and, consequently, better response generation by the LLM.
問題 #52
A Generative Al Engineer needs to design an LLM pipeline to conduct multi-stage reasoning that leverages external tools. To be effective at this, the LLM will need to plan and adapt actions while performing complex reasoning tasks.
Which approach will do this?
答案:A
解題說明:
The task requires an LLM pipeline for multi-stage reasoning with external tools, necessitating planning, adaptability, and complex reasoning. Let's evaluate the options based on Databricks' recommendations for advanced LLM workflows.
* Option A: Train the LLM to generate a single, comprehensive response without interacting with any external tools, relying solely on its pre-trained knowledge
* This approach limits the LLM to its static knowledge base, excluding external tools and multi- stage reasoning. It can't adapt or plan actions dynamically, failing the requirements.
* Databricks Reference:"External tools enhance LLM capabilities beyond pre-trained knowledge" ("Building LLM Applications with Databricks," 2023).
* Option B: Implement a framework like ReAct which allows the LLM to generate reasoning traces and perform task-specific actions that leverage external tools if necessary
* ReAct (Reasoning + Acting) combines reasoning traces (step-by-step logic) with actions (e.g., tool calls), enabling the LLM to plan, adapt, and execute complex tasks iteratively. This meets all requirements: multi-stage reasoning, tool use, and adaptability.
* Databricks Reference:"Frameworks like ReAct enable LLMs to interleave reasoning and external tool interactions for complex problem-solving"("Generative AI Cookbook," 2023).
* Option C: Encourage the LLM to make multiple API calls in sequence without planning or structuring the calls, allowing the LLM to decide when and how to use external tools spontaneously
* Unstructured, spontaneous API calls lack planning and may lead to inefficient or incorrect tool usage. This doesn't ensure effective multi-stage reasoning or adaptability.
* Databricks Reference: Structured frameworks are preferred:"Ad-hoc tool calls can reduce reliability in complex tasks"("Building LLM-Powered Applications").
* Option D: Use a Chain-of-Thought (CoT) prompting technique to guide the LLM through a series of reasoning steps, then manually input the results from external tools for the final answer
* CoT improves reasoning but relies on manual tool interaction, breaking automation and adaptability. It's not a scalable pipeline solution.
* Databricks Reference:"Manual intervention is impractical for production LLM pipelines" ("Databricks Generative AI Engineer Guide").
Conclusion: Option B (ReAct) is the best approach, as it integrates reasoning and tool use in a structured, adaptive framework, aligning with Databricks' guidance for complex LLM workflows.
問題 #53
A Generative AI Engineer is creating an LLM-powered application that will need access to up-to-date news articles and stock prices.
The design requires the use of stock prices which are stored in Delta tables and finding the latest relevant news articles by searching the internet.
How should the Generative AI Engineer architect their LLM system?
答案:D
解題說明:
To build an LLM-powered system that accesses up-to-date news articles and stock prices, the best approach is tocreate an agentthat has access to specific tools (option D).
* Agent with SQL and Web Search Capabilities:By using an agent-based architecture, the LLM can interact with external tools. The agent can query Delta tables (for up-to-date stock prices) via SQL and perform web searches to retrieve the latest news articles. This modular approach ensures the system can access both structured (stock prices) and unstructured (news) data sources dynamically.
* Why This Approach Works:
* SQL Queries for Stock Prices: Delta tables store stock prices, which the agent can query directly for the latest data.
* Web Search for News: For news articles, the agent can generate search queries and retrieve the most relevant and recent articles, then pass them to the LLM for processing.
* Why Other Options Are Less Suitable:
* A (Summarizing News for Stock Prices): This convoluted approach would not ensure accuracy when retrieving stock prices, which are already structured and stored in Delta tables.
* B (Stock Price Volatility Queries): While this could retrieve relevant information, it doesn't address how to obtain the most up-to-date news articles.
* C (Vector Store): Storing news articles and stock prices in a vector store might not capture the real-time nature of stock data and news updates, as it relies on pre-existing data rather than dynamic querying.
Thus, using an agent with access to both SQL for querying stock prices and web search for retrieving news articles is the best approach for ensuring up-to-date and accurate responses.
問題 #54
A Generative Al Engineer at an automotive company would like to build a question-answering chatbot for customers to inquire about their vehicles. They have a database containing various documents of different vehicle makes, their hardware parts, and common maintenance information.
Which of the following components will NOT be useful in building such a chatbot?
答案:A
解題說明:
The task involves building a question-answering chatbot for an automotive company using a database of vehicle-related documents. The chatbot must efficiently process customer inquiries and provide accurate responses. Let's evaluate each component to determine which isnotuseful, per Databricks Generative AI Engineer principles.
* Option A: Response-generating LLM
* An LLM is essential for generating natural language responses to customer queries based on retrieved information. This is a core component of any chatbot.
* Databricks Reference:"The response-generating LLM processes retrieved context to produce coherent answers"("Building LLM Applications with Databricks," 2023).
* Option B: Invite users to submit long, rather than concise, questions
* Encouraging long questions is a user interaction design choice, not a technical component of the chatbot's architecture. Moreover, long, verbose questions can complicate intent detection and retrieval, reducing efficiency and accuracy-counter to best practices for chatbot design. Concise questions are typically preferred for clarity and performance.
* Databricks Reference: While not explicitly stated, Databricks' "Generative AI Cookbook" emphasizes efficient query processing, implying that simpler, focused inputs improve LLM performance. Inviting long questions doesn't align with this.
* Option C: Vector database
* A vector database stores embeddings of the vehicle documents, enabling fast retrieval of relevant information via semantic search. This is critical for a question-answering system with a large document corpus.
* Databricks Reference:"Vector databases enable scalable retrieval of context from large datasets"("Databricks Generative AI Engineer Guide").
* Option D: Embedding model
* An embedding model converts text (documents and queries) into vector representations for similarity search. It's a foundational component for retrieval-augmented generation (RAG) in chatbots.
* Databricks Reference:"Embedding models transform text into vectors, facilitating efficient matching of queries to documents"("Building LLM-Powered Applications").
Conclusion: Option B is not a usefulcomponentin building the chatbot. It's a user-facing suggestion rather than a technical building block, and it could even degrade performance by introducing unnecessary complexity. Options A, C, and D are all integral to a Databricks-aligned chatbot architecture.
問題 #55
A Generative Al Engineer is ready to deploy an LLM application written using Foundation Model APIs. They want to follow security best practices for production scenarios Which authentication method should they choose?
答案:D
解題說明:
The task is to deploy an LLM application using Foundation Model APIs in a production environment while adhering to security best practices. Authentication is critical for securing access to Databricks resources, such as the Foundation Model API. Let's evaluate the options based on Databricks' security guidelines for production scenarios.
* Option A: Use an access token belonging to service principals
* Service principals are non-human identities designed for automated workflows and applications in Databricks. Using an access token tied to a service principal ensures that the authentication is scoped to the application, follows least-privilege principles (via role-based access control), and avoids reliance on individual user credentials. This is a security best practice for production deployments.
* Databricks Reference:"For production applications, use service principals with access tokens to authenticate securely, avoiding user-specific credentials"("Databricks Security Best Practices,"
2023). Additionally, the "Foundation Model API Documentation" states:"Service principal tokens are recommended for programmatic access to Foundation Model APIs."
* Option B: Use a frequently rotated access token belonging to either a workspace user or a service principal
* Frequent rotation enhances security by limiting token exposure, but tying the token to a workspace user introduces risks (e.g., user account changes, broader permissions). Including both user and service principal options dilutes the focus on application-specific security, making this less ideal than a service-principal-only approach. It also adds operational overhead without clear benefits over Option A.
* Databricks Reference:"While token rotation is a good practice, service principals are preferred over user accounts for application authentication"("Managing Tokens in Databricks," 2023).
* Option C: Use OAuth machine-to-machine authentication
* OAuth M2M (e.g., client credentials flow) is a secure method for application-to-service communication, often using service principals under the hood. However, Databricks' Foundation Model API primarily supports personal access tokens (PATs) or service principal tokens over full OAuth flows for simplicity in production setups. OAuth M2M adds complexity (e.g., managing refresh tokens) without a clear advantage in this context.
* Databricks Reference:"OAuth is supported in Databricks, but service principal tokens are simpler and sufficient for most API-based workloads"("Databricks Authentication Guide," 2023).
* Option D: Use an access token belonging to any workspace user
* Using a user's access token ties the application to an individual's identity, violating security best practices. It risks exposure if the user leaves, changes roles, or has overly broad permissions, and it's not scalable or auditable for production.
* Databricks Reference:"Avoid using personal user tokens for production applications due to security and governance concerns"("Databricks Security Best Practices," 2023).
Conclusion: Option A is the best choice, as it uses a service principal's access token, aligning with Databricks' security best practices for production LLM applications. It ensures secure, application-specific authentication with minimal complexity, as explicitly recommended for Foundation Model API deployments.
問題 #56
......
每每談及到 KaoGuTi 網站的 Databricks-Generative-AI-Engineer-Associate 考題,很多人都稱贊其出題率是很高的,讓許多人的 Databricks 證照之路沒有後顧之憂。“萬事俱備,只欠東風。”如果你沒有最新的 Databricks-Generative-AI-Engineer-Associate 考題作參照,再多的努力,是沒有用的,畢竟我們的 Databricks-Generative-AI-Engineer-Associate 考題可以作為真實考題題型的參照,讓大家順利進入了理想的單位。
Databricks-Generative-AI-Engineer-Associate資訊: https://www.kaoguti.com/Databricks-Generative-AI-Engineer-Associate_exam-pdf.html